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B Frequency-Domain Analysis: Fourier Transform

Electrical engineers live in the two worlds, so to speak, of time and frequency.
Frequency-domain analysis is an extremely valuable tool to the communi-
cations engineer, more so perhaps than to other systems analysts. Since the
communications engineer is concerned primarily with signal bandwidths and
signal locations in the frequency domain, rather than with transient analysis,
the essentially steady-state approach of the (complex exponential) Fourier
series and transforms is used rather than the Laplace transform.

B.1 Math background

B.1. Euler’s formula : ejx = cosx+ j sinx.

cos (A) = Re
{
ejA
}

=
1

2

(
ejA + e−jA

)
sin (A) = Im

{
ejA
}

=
1

2j

(
ejA − e−jA

)
.

16Again, these are called the law/rule of the lazy statistician (LOTUS) [16, Thm 3.6 p 48],[7, p.
149] because it is so much easier to use the above formula than to first find the pmf of g(X) or g(X,Y ). It
is also called substitution rule [15, p 271].
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B.2. We can use cosx = 1
2

(
ejx + e−jx

)
and sinx = 1

2j

(
ejx − e−jx

)
to derive

many trigonometric identities:

(a) cos(−x) = cos(x),

(b) cos
(
x− π

2

)
= sin(x),

(c) cos2(x) = 1
2 (cos(2x) + 1)

(d) sin(x) cos(x) = 1
2 sin(2x), and

(e) d
dx sinx = cosx

(f) product-to-sum formula

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) . (54)

B.2 Continuous-Time Fourier Transform

Definition B.3. The (direct) Fourier transform of a signal g(t) is defined
by

G(f) =

+∞∫
−∞

g(t)e−j2πftdt (55)

This provides the frequency-domain description of g(t). Conversion back to
the time domain is achieved via the inverse (Fourier) transform:

g (t) =

∞∫
−∞

G (f) ej2πftdf (56)

• We may combine (55) and (56) into one compact formula:

∞∫
−∞

G (f) ej2πftdf = g (t)
F−−⇀↽−−
F−1

G (f) =

∞∫
−∞

g (t) e−j2πftdt. (57)

• We may simply write G = F {g} and g = F−1 {G}.

• Note that G(0) =
∞∫
−∞

g(t)dt and g(0) =
∞∫
−∞

G(f)df .
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B.4. In some references17, the (direct) Fourier transform of a signal g(t) is
defined by

Ĝ(ω) =

∫ +∞

−∞
g(t)e−jωtdt (58)

In which case, we have

1

2π

∞∫
−∞

Ĝ (ω) ejωtdω = g (t)
F−−⇀↽−−
F−1

Ĝ (ω) =

∞∫
−∞

g (t) e−jωtdt (59)

• In MATLAB, these calculations are carried out via the commands fourier
and ifourier.

• Note that Ĝ(0) =
∞∫
−∞

g(t)dt and g(0) = 1
2π

∞∫
−∞

Ĝ(ω)dω.

• The relationship between G(f) in (55) and Ĝ(ω) in (58) is given by

G(f) = Ĝ(ω)
∣∣∣
ω=2πf

(60)

Ĝ(ω) = G(f)|f= ω
2π

(61)

Before we introduce our first but crucial transform pair in Example B.7
which will involve rectangular function, we want to introduce the indicator
function which gives compact representation of the rectangular function.
We will see later that the transform of the rectangular function gives a sinc
function. Therefore, we will also discuss the sinc function as well.

Definition B.5. An indicator function gives only two values: 0 or 1. It
is usually written in the form

1[some condition(s) involving t].

Its value at a particular t is one if and only if the condition(s) inside is
satisfied for that t. For example,

1[|t| ≤ a] =

{
1, −a ≤ t ≤ a,

0, otherwise.

17MATLAB uses this definition.
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Alternatively, we can use a set to specify the values of t at which the indi-
cator function gives the value 1:

1A(t) =

{
1, t ∈ A,
0, t /∈ A.

In particular, the set A can be some interval:

1[−a,a](t) =

{
1, −a ≤ t ≤ a,
0, otherwise.

Definition B.6. The function sinc(x) ≡ (sinx)/x is plotted in Figure 24.
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Figure 24: Sinc function

• This function plays an important role in signal processing. It is also
known as the filtering or interpolating function.

• Using L’Hôpital’s rule, we find lim
x→0

sinc(x) = 1.

• sinc(x) is the product of an oscillating signal sin(x) (of period 2π) and
a monotonically decreasing function 1/x . Therefore, sinc(x) exhibits
sinusoidal oscillations of period 2π, with amplitude decreasing contin-
uously as 1/x.

• In MATLAB and in [17, eq. 2.64], sinc(x) is defined as (sin(πx))/πx. In
which case, it is an even damped oscillatory function with zero crossings
at integer values of its argument.
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Example B.7. Rectangular function18 and Sinc function:

1 [|t| ≤ a]
F−−⇀↽−−
F−1

sin(2πfa)

πf
=

2 sin (aω)

ω
= 2a sinc (aω) (62)
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Figure 25: Fourier transform of sinc and rectangular functions

• By setting a = T0/2, we have

1

[
|t| ≤ T0

2

]
F−−⇀↽−−
F−1

T0 sinc(πT0f). (63)

• In [9, p 78], the function 1 [|t| ≤ 0.5] is defined as the unit gate function
rect (x).

Definition B.8. The (Dirac) delta function or (unit) impulse function
is denoted by δ(t). It is usually depicted as a vertical arrow at the origin.
Note that δ(t) is not a true function; it is undefined at t = 0. We define
δ(t) as a generalized function which satisfies the sampling property (or
sifting property) ∫ ∞

−∞
φ(t)δ(t)dt = φ(0) (64)

for any function φ(t) which is continuous at t = 0.

• In this way, the delta “function” has no mathematical or physical mean-
ing unless it appears under the operation of integration.

18
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• Intuitively we may visualize δ(t) as an infinitely tall, infinitely narrow
rectangular pulse of unit area: lim

ε→0

1
ε1
[
|t| ≤ ε

2

]
.

B.9. Properties of δ(t):

• δ(t) = 0 for t 6= 0.
δ(t− T ) = 0 for t 6= T .

•
∫
A δ(t)dt = 1A(0).

(a)
∫
δ(t)dt = 1.

(b)
∫
{0} δ(t)dt = 1.

(c)
∫ x
−∞ δ(t)dt = 1[0,∞)(x). Hence, we may think of δ(t) as the “deriva-

tive” of the unit step function U(t) = 1[0,∞)(t).

•
∫
φ(t)δ(t− c)dt = φ(c) for φ continuous at T . In fact, for any ε > 0,∫ T+ε

T−ε
φ(t)δ(t− c)dt = φ(c).

• Convolution property:

(δ ∗ φ)(t) = (φ ∗ δ)(t) =

∫ ∞
−∞

φ(τ)δ(t− τ)dτ = φ(t) (65)

where we assume that φ is continuous at t.

• δ(at) = 1
|a|δ(t). In particular,

δ(ω) =
1

2π
δ(f) (66)

and

δ(ω − ω0) = δ(2πf − 2πf0) =
1

2π
δ(f − f0), (67)

where ω = 2πf and ω0 = 2πf0.

Example B.10. Fourier transform pairs involving the δ function:

(a) δ(t)
F−−⇀↽−−
F−1

1.

(b) ej2πf0t
F−−⇀↽−−
F−1

δ (f − f0).
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(c) ejω0t
F−−⇀↽−−
F−1

2πδ (ω − ω0).

(d) cos(2πf0t)
F−−⇀↽−−
F−1

1
2 (δ (f − f0) + δ (f + f0)).

B.11. Symmetry Properties:

(a) Conjugate symmetry19: If g(t) is real-valued, thenG(−f) = (G(f))∗

• Observe that if we know G(f) for all f positive, we also know
G(f) for all f negative. Interpretation: Only half of the spec-
trum contains all of the information. Positive-frequency part of
the spectrum contains all the necessary information. The negative-
frequency half of the spectrum can be determined by simply com-
plex conjugating the positive-frequency half of the spectrum.

(b) If g(t) is real and even, then so is G(f).

(c) If g(t) is real and odd, then G(f) is pure imaginary and odd.

B.12. Shifting properties

(a) Time-shift :

g (t− t1)
F−−⇀↽−−
F−1

e−j2πft1G (f)

• Note that |e−j2πft1| = 1. So, the (amplitude) spectrum of g (t− t1)
looks exactly the same as the spectrum of g(t) (unless you also look
at their phases).

(b) Frequency-shift (or modulation):

ej2πf1tg (t)
F−−⇀↽−−
F−1

G (f − f1)

19This is called Hermitian symmetry in [13, p 17 ].
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B.13. Let g(t), g1(t), and g2(t) denote signals with G(f), G1(f), and G2(f)
denoting their respective Fourier transforms.

(a) Superposition theorem (linearity):

a1g1(t) + a2g2(t)
F−−⇀↽−−
F−1

a1G1(f) + a2G2(f).

(b) Scale-change theorem (scaling property [9, p 88]):

g(at)
F−−⇀↽−−
F−1

1

|a|
G

(
f

a

)
.

• The function g(at) represents the function g(t) compressed in time
by a factor a (when |a| > l). Similarly, the function G(f/a) repre-
sents the function G(f) expanded in frequency by the same factor
a.

• The scaling property says that if we “squeeze” a function in t,
its Fourier transform “stretches out” in f . It is not possible to
arbitrarily concentrate both a function and its Fourier transform.

• Generally speaking, the more concentrated g(t) is, the more spread
out its Fourier transform G(f) must be.

• This trade-off can be formalized in the form of an uncertainty prin-
ciple. See also B.19 and B.20.

• Intuitively, we understand that compression in time by a factor
a means that the signal is varying more rapidly by the same fac-
tor. To synthesize such a signal, the frequencies of its sinusoidal
components must be increased by the factor a, implying that its
frequency spectrum is expanded by the factor a. Similarly, a signal
expanded in time varies more slowly; hence, the frequencies of its
components are lowered, implying that its frequency spectrum is
compressed.

(c) Duality theorem (Symmetry Property [9, p 86]):

G(t)
F−−⇀↽−−
F−1

g(−f).
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• In words, for any result or relationship between g(t) and G(f),
there exists a dual result or relationship, obtained by interchanging
the roles of g(t) and G(f) in the original result (along with some
minor modifications arising because of a sign change).

In particular, if the Fourier transform of g(t) is G(f), then the
Fourier transform of G(f) with f replaced by t is the original time-
domain signal with t replaced by −f .

• If we use the ω-definition (58), we get a similar relationship with
an extra factor of 2π:

G2(t)
F−−⇀↽−−
F−1

2πg(−ω).

Example B.14. From Example B.7, we know that

1 [|t| ≤ a]
F−−⇀↽−−
F−1

2a sinc (2πaf) (68)

By the duality theorem, we have

2a sinc(2πat)
F−−⇀↽−−
F−1

1[| − f | ≤ a],

which is the same as

sinc(2πf0t)
F−−⇀↽−−
F−1

1

2f0
1[|f | ≤ f0]. (69)

Both transform pairs are illustrated in Figure 25.

Definition B.15. The convolution of two signals, g1(t) and g2(t), is a new
function of time, g(t). We write

g = g1 ∗ g2.

It is defined as the integral of the product of the two functions after one is
reversed and shifted:

g(t) = (g1 ∗ g2)(t) (70)

=

∫ +∞

−∞
g1(µ)g2(t− µ)dµ =

∫ +∞

−∞
g1(t− µ)g2(µ)dµ. (71)

• Note that t is a parameter as far as the integration is concerned.
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• The integrand is formed from g1 and g2 by three operations:

(a) time reversal to obtain g2(−µ),

(b) time shifting to obtain g2(−(µ− t)) = g2(t− µ), and

(c) multiplication of g1(µ) and g2(t− µ) to form the integrand.

• In some references, (70) is expressed as g(t) = g1(t) ∗ g2(t).

B.16. Convolution theorem:

(a) Convolution-in-time rule:

g1 ∗ g2

F−−⇀↽−−
F−1

G1 ×G2. (72)

(b) Convolution-in-frequency rule:

g1 × g2

F−−⇀↽−−
F−1

G1 ∗G2. (73)

Example B.17. We can use the convolution theorem to “prove” the frequency-
sift property in B.12.

B.18. Parseval’s theorem (Rayleigh’s energy theorem, Plancherel for-
mula) for Fourier transform:∫ +∞

−∞
|g(t)|2dt =

∫ +∞

−∞
|G(f)|2df. (74)

The LHS of (74) is called the (total) energy of g(t). On the RHS, |G(f)|2
is called the energy spectral density of g(t). By integrating the energy
spectral density over all frequency, we obtain the signal ’s total energy. The
energy contained in the frequency band B can be found from the integral∫
B |G(f)|2df .

More generally, Fourier transform preserves the inner product [3, Theo-
rem 2.12]:

〈g1, g2〉 =

∫ ∞
−∞

g1(t)g
∗
2(t)dt =

∫ ∞
−∞

G1(f)G∗2(f)df = 〈G1, G2〉.
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B.19. (Heisenberg) Uncertainty Principle [3, 14]: Suppose g is a func-
tion which satisfies the normalizing condition ‖g‖2

2 =
∫
|g(t)|2dt = 1 which

automatically implies that ‖G‖2
2 =

∫
|G(f)|2df = 1. Then(∫

t2|g(t)|2dt
)(∫

f 2|G(f)|2df
)
≥ 1

16π2
, (75)

and equality holds if and only if g(t) = Ae−Bt
2

where B > 0 and |A|2 =√
2B/π.

• In fact, we have(∫
t2|g(t− t0)|2dt

)(∫
f 2|G(f − f0)|2df

)
≥ 1

16π2
,

for every t0, f0.

• The proof relies on Cauchy-Schwarz inequality.

• For any function h, define its dispersion ∆h as
∫
t2|h(t)|2dt∫
|h(t)|2dt . Then, we can

apply (75) to the function g(t) = h(t)/‖h‖2 and get

∆h ×∆H ≥
1

16π2
.

B.20. A signal cannot be simultaneously time-limited and band-limited.
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